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Introduction 
 The topic of signal and image processing for MRI is vast, and it is necessary to restrict 
our attention to just a few central concepts.  These will be Fourier transformation, sampling, 
filtering, convolution and the convolution theorem, the point spread function, and aliasing 
 
Fourier Transformation 
 A broad class of functions, including those that we treat in MRI, may be regarded as a 
continuous superposition of complex exponentials. The Fourier transform (FT) of a time-domain 
function g(t) is a frequency-domain function G(ν), or spectrum, defined by: 
  G       [1] (v) = g(t)e− j2πνt
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where j is the imaginary unit quantity.  Physically, Eq. [1] shows how to extract from g(t) the 
amplitude of the frequency component at frequency ν.  Conversely, the inverse FT (IFT) 
describes the synthesis of a time domain signal from sinusoidal components:  
        [2] g(t) = G(ν)e j2πνt
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∫ dν

From the above, we say that time, t, and frequency, ν, form a FT pair.  In applications to image 
processing, the two-dimensional Fourier transform (2D-FT) frequently arises, with spatial 
position vectors, x = (x, y), and spatial frequency vectors, k = (kx, ky), forming the relevant FT 
pair.  The 2-D FT and its inverse are then defined by: 
       [3] 2 ( )( , ) ( , ) x yj k x k y

x yG k k g x y e dxdyπ− += ∫∫
and 
 2 ( )( , ) ( , ) x yj k x k y

x yg x y G k k e dk dkπ += ∫∫ x y
      [4] 

 Another important result which can be shown to be equivalent to the above is the Fourier 
series expansion:  The Fourier series of a periodic function gper(t), with period T, is:
         [5] g per (t) = α ne j 2πnt /T
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Using the properties of trigonometric integrals, one finds 
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Eq. [5] shows that a periodic function can be regarded as a denumerable superposition of 
complex exponentials defined over its period. 
 
Sampling of Continuous Data 
 MRI data acquisition and analysis deals with sampled, rather than continuous, 
data.  The induced signal g(t) in the receiver coil as a function of time is an analog signal, which, 
after mixing down to low frequency, looks like the solid line in the illustration below.  The 
analog-to-digital converter samples this at a certain rate, the sampling frequency νs.  This gives 



the sampled data points, gsamp(t), as illustrated.  The reciprocal of νs is the time between the 
sampling events, and is called the sampling interval or dwell time, denoted ΔT.  Clearly, 
sampling the continuous signal at different rates will lead to different sets of sampled data. 

  
 Sampling can be described formally as the product of g(t) with a sampling function, 
Samp(t), which equals unity at each of the sampling times and is otherwise zero.  In terms of the 
Dirac delta function, δ, it can be written as: 
         [7] ( ; ) ( )

n
Samp t T t n Tδ

+∞

=−∞

Δ = − Δ∑
so that  
 ( ) ( ) ( ) ( ) ( )

n n
sampg t g t t n T g n T t n Tδ

+∞ +∞

=−∞ =−∞

= • − Δ = Δ − Δ∑ ∑ δ      [8] 

Note that in reality only a finite number of samples can be obtained, as further discussed below. 
 
Discrete Fourier Transformation  
 While the continuous FT and IFT are very convenient for developing physical insight and 
deriving basic theorems, sampled data requires use of the discrete FT (DFT).  With time and 
frequency functions again denoted by g and G, the N-point DFT and inverse DFT are given by: 
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where g and G are now forced to be periodic with period N.  For p, any integer,  
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The success of signal processing based upon the DFT is due largely to the fast FT (FFT)  
algorithm introduced by Cooley and Tukey in 1965, greatly accelerating these calculations. 
  
Digital Filtering and Convolution 
 A digital filter T transforms an input sequence, x[n], into an output sequence, y[n]:  
T{x[n]} = y[n].  Filters which are linear and time invariant (LTI) possess especially favorable 
properties.  A filter is linear if, given two input sequences, with T{x1[n]} = y1[n] and T{x2[n]} = 
y2[n], then T{α x1[n] + β x2[n]} = α y1[n] + β y2[n].  Time invariance means that a time shifted 
input leads to an equivalently time shifted output:  T{x[n-D]} = y[n-D], where x[n-D] is a 
replicate of x[n] delayed by D steps, and similarly for y[n-D]. 
 The impulse response of a filter T is the output, hT[n], resulting from application of T to 
a data stream represented by a unit impulse at the origin, that is, to x[n] ≡δ[n] ≡ {1, 0, 0, …}: 



 T{δ[n]} ≡ hT[n]        [12] 
where δ[n] is the discrete delta function.  An LTI filter T is fully characterized by its impulse 
response; knowing hT[n] leads to an explicit formula for the effect of T on any x[n].  This 
formula involves a convolution sum, as will be demonstrated below. 
 
Convolution and the Convolution Theorem 
 Digital convolution of two data streams of length N, x1[n] and x2[n], is defined by 
 c[n] = x1[n]* x2[n] ≡ x1

k=0

N−1
∑ [k] x2[n − k]     [13] 

where * is the symbol used to denote convolution.  The summation describes a sum of products 
of the terms in x1 marching forward, and the terms in x2 marching backward.  While confusing, 
Eq. [13] arises naturally from consideration of the impulse response of an LTI filter. For any k,  
 δ[n−k] = {0, 0, 0, 1, 0, 0, …} 
with the lone "1" in the k-th position.  A data stream x[n] can accordingly be written 
 x[n] = x[0]δ[n] + x[1]δ[n−1] + x[2]δ[n−2] + x[3]δ[n−3] + x[4]δ[n−4] + …  

 Application of a time-invariant filter T with an impulse response hT[n] to an individual 
term in this sequence is: 
 T{x[k]δ[n−k]} = x[k] T{δ[n−k]} = x[k] hT[n-k] 
so that operating with T on the entire sequence x[n] and using linearity, one finds 
 T{x[n]} = x[

k
∑ k]hT [n − k] ≡ x[n] *hT [n]     [14] 

This demonstrates that knowing the impulse response hT[n] of an LTI filter T allows one to 
calculate the effect of T on an arbitrary data stream x[n] in terms of a convolution sum. 
 Ref. (1) states that "[the convolution theorem] is possibly the most important and 
powerful tool in modern scientific analysis".  That must mean it's pretty important!  Let the DFT 
of the periodic sampled function x1[n] be denoted X1[k]:  DFT{x1[n]} = X1[k].  Similarly, let 
DFT{x2[n]} = X2[k].  Then the time-domain convolution theorem states that: 
 DFT{x1[n] * x2[n]}=X1[k] X2[k]      [15] 
where the right hand side is the term-by-term multiplicative product of the indicated sequences.  
The frequency-domain convolution theorem states that: 
 DFT{x1[n] x2[n]}=X1[k]* X2[k]      [16] 
Eqs. [15] and [16] together indicate that multiplication in one domain, e.g. time, is equivalent to 
convolution in the other domain, e.g. frequency. 
 These results are identical to those for the continuous FT, with convolution defined by 
        [17] x(t) * y(t) = x(s)y(t − s)ds
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Similarly to Eq. [13], this follows naturally from considerations of analog filters.  The 
convolution theorems are written, for two functions f(t) and g(t) with FT's F(ν) and G(ν), 
 FT{f(t)*g(t)} = F(ν)•G(ν)       [18] 
and 
 FT{f(t)•g(t)} = F(ν)*G(ν)       [19] 
For later use, we note that because f(t) = IFT{F(ν)} and g(t)=IFT{G(ν)}, Eq. [18] becomes 



FT{IFT{F(ν)}*IFT{G(ν)}} = F(ν)•G(ν).  Taking the IFT of both sides, we have equivalently: 
 IFT{F(ν)}*IFT{G(ν)}=IFT{F(ν)•G(ν)}     [20] 
Note that these relations, written here in terms of time and frequency functions, actually apply to 
any pair of domains related by Fourier transformation.  This includes the x and k spaces of MRI.  
 
Applications of the Convolution Theorem--Data Truncation and Sampling 
 In an idealized treatment of two-dimensional k-space MRI data acquisition, one obtains a 
continuous function s(kx, ky) which is related to the image, ρ(x, y), by the imaging equation:   
 ρ(x, y) =  IFT{s(kx, ky)}.       [21] 
However, the actual data matrix is discrete and non-infinite in extent.  The convolution theorem 
helps us understand the effect of this.  We consider the one-dimensional case, with obvious 
extensions to two dimensions.  The finite k-space matrix indicates that the ideal infinite 
continuous data function s(k) is effectively set to zero outside of some values kmin and kmax, 
typically

m m

m

0,
Rect( ) 1,

0,

mk k
k k k

k k

< −⎧
⎪= − < <⎨
⎪ >⎩

 with -kmin = kmax  ª km.  This is equivalent to multiplication of s(k) by a function: 
         [22] 

k

Thus, the derived density is: 
ρtrunc(x) = IFT{s(k) • Rect(k)}=IFT{s(k)}*IFT{Rect(k)}  
    =ρ(x)*2kmsin(2πkmx)/(2πkmx)      [23] 
using Eq. [21] written for one dimension with{x, k} as Fourier variables, and a straightforward 
calculation of IFT{Rect(k)}.  Physically, consider a point object located at the origin: ρ(x)=δ(x).  
Then from Eq. [23] one has for the image density resulting from the actual sample density: 
 δ(x) →δ(x)*2kmsin(2πkmx)/(2πkmx)=δ(x)*PSFtrunc   [24] 
where 
  PSFtrunc = 2kmsin(2πkmx)/(2πkmx) 
denotes the point spread function resulting from data truncation.  Thus, truncation leads to a 
smearing out of the true density at a point x to neighboring points, as illustrated below.   
  ρ(x) 
           ρtrunc(x)=ρ(x)*2kmsin(2πkmx)/(2πkmx) 
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More generally, we see that the effect of a PSF can be written: 
 ρ(x)→ρ(x)*PSF        [25] 
 Sampling in k-space can be thought of as multiplication of the truncated data by a 
sampling function: 
        [26] ( ; ) ( )
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indicating sampling in k space at intervals of Δk.  One finds that IFT(Samp(k; Δk)) = 
(1/Δk)Samp(x, 1/Δk).  Therefore, the derived density from truncated sampled data is seen to be: 
 ρtrunc,samp(x) = IFT{s(k) • Rect(k)•Samp(k; Δk)} 
   =IFT{s(k)}*IFT{Rect(k)}*IFT{Samp(k; Δk)}  [27] 
   =ρ(x)*2kmsin(2πkmx)/(2πkmx)*(1/Δk)Samp(x, 1/Δk) 
The first and last terms, ρsamp(x) = ρ(x)*(1/Δk)Samp(x, 1/Δk), indicate the important result that 
sampling has led to replication of the original density at intervals of 1/Δk in the spatial domain.   
 The read dimension in 2D-FT MRI is filled by sampling at intervals ΔT, with Δk= γGrΔT, 
where Gr is the read gradient and γ is the gyromagnetic ratio divided by 2π.  The other dimension 
of k-space is filled via the more complex process of phase encoding.  Nevertheless, after the k-
space matrix is filled, these two dimensions are equivalent and the discussion above applies 
equally to both read and phase encode directions. 
 
Application of the Convolution Theorem--The Point Spread Function Due to T2* Decay 
 We have seen above that multiplication of the k-space data by a function H(k) leads to a 
point spread function given by PSF =  IFT{H(k)}.  As another example, we can examine the 
blurring of gradient echo images by the T2* decay occurring during acquisition of each k-space 
line.  For convenience, we will incorporate truncation, but not sampling, in this discussion. Data 
for each k-space line which, without decay, would be s(k)•rect(k), becomes 
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The gradient echo occurs at the center of the read gradient window, so we write 
 k = γGrt',   
with t' = t – TE.  Then 
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A straightforward calculation then yields a complex function PSF(x) parameterized by  
km/γGT2*.  We evaluate the effect of this by using the fact that the total sampling time for each 
line of k-space is given by Ts = N • ΔT = 2km/γG, remembering that k-space sampling extends 
from -km to +km.  The PSF may then be expressed in terms of Ts
magnitude of the PSF, |PSF|, as a function of x may be examined, as below: 

/T2*, and plots of the 

     



 
When T2* decay is absent, that is, Ts/T2*=0, the results are identical to those obtained from 
truncation alone.  When Ts/T2* = 1, there is virtually no further broadening beyond that due to 
windowing.  As the sampling time becomes substantially longer than T2*, we see progressive 
spreading of the |PSF|, indicating progressive blurring of the image.  The PSF due to T2 decay 
during data acquisition in a spin echo experiment can be calculated in a similar fashion, as can all 
of these effects for long echo-train length acquisitions in fast imaging experiments. 
 
Aliasing 
 An aliased frequency is a high frequency temporal or spatial signal component that is 
represented at an erroneously low frequency.  This results from sampling at too low a rate to 
faithfully capture high frequency components. 
 Recall that any signal we are likely to care about can be represented by the sum of sine 
waves.  Therefore, we can restrict our attention to sinusoids, with the knowledge that the results 
can be readily generalized to the more general case.  A digitized sine wave can be visualized as:  

       
Is it obvious what continuous sine wave this was derived from?  A natural choice is shown below 
(left), but the data points fit equally well onto the sinusoid shown on the right:   

     
 Thus, while the two analog signals illustrated above are very different, the sampled data 
streams derived from them will be identical if they are digitized at the rate illustrated.  While 
there are an infinite number of higher frequency sinusoids that can fit the sampled data, there is a 
unique lowest-frequency sinusoid which fits the data.  All of the high frequency sinusoids, when 
sampled, will be assigned to this lower frequency, that is, they will be aliased.  The extension to 
a general, non-sinusoidal, sampled signal is clear; each Fourier component is assigned to the 
lowest possible frequency that fits the sampled data.  Thus, some frequency components of a 
signal may be aliased, while others may not be. 
 The Nyquist criterion provides an explicit recipe for avoiding aliasing.  This states that 
for a bandlimited time-domain signal with highest frequency component νmax, if the sampling 
rate, νs, satisfies 
 νs > 2νmax         [28] 
then aliasing will not occur.  More formally, we wish to characterize the spectrum, Gsamp(ν), of 
data stream obtained by sampling g(t):  
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where the second equality follows from a Fourier series expansion of the sum of Dirac delta 
functions.  F
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 [30] 
so that Gsamp(ν) consists of periodic replicates of G(ν), placed at intervals of 1/ΔT = νs: 

          

Gsamp(ν) 

Thus, if the original spectrum G(ν) is zero for ν < −νs/2 and for ν > νs/2, then the spectral 
replicates will not intrude on the interval where the original spectrum resides, that is, on the 
interval ν ∈(−νs/2, νs/2).  Therefore, the original spectrum is preserved without distortion as 
long as the frequency spectrum G(ν) is bandlimited to frequencies |ν| < νs/2.  This is the Nyquist 
criterion.   
 How does this apply to image data?  Analogous to the above discussion, sampling of k-
space must be of high enough frequency to properly represent high-frequency spatial 
components.  We noted in our discussion of Eq. [23] that k-space sampling leads to replication of 
image density at intervals of 1/Δk in the spatial domain.  To avoid having these replicates 
(actually, they are blurred replicates, due to the middle term, 2kmsin(2πkmx)/(2πkmx), of Eq. 
[27]) overlie each other, the spatial extent W of the object must be smaller than 1/Δk: 
 Δk < 1/W         [31] 
This can be expressed in terms of k-space sampling most simply by considering the read 
(subscript "r") direction.  Recall that sampling bandwidth is related to the field of view by:  
 γGrFOVr = Sampling Bandwidth = 1/ΔT.          [32] 
Now, from the definition of k-space,  
 Δkr = γGrΔT         [33] 
Thus, using Eq. [31], aliasing can be avoided by requiring that the sampling interval satisfy: 
  ΔT < 1/(γGrWr).        [34] 
With 1/ΔT = γGr /Δkr, Eq. [32] becomes the well-known result that  
 FOVr = 1/Δkr.   
Therefore, the condition Eq. [31] to avoid aliasing can be recast into the familiar form 
  Wr < FOVr.            [35] 
 Because of the correspondence of sampling density in k-space to the rate of sampling in 
the time domain given by Eq. [33], with constant Gr, a short dwell time, resulting in a high 
receiver bandwidth, can be used to avoid aliasing.  This is often not a problem−it means 



collecting more data, but doesn't add to the acquisition time of the image.  This is illustrated 
below for a spherical phantom.  The sampling rate is too low in the left hand image, leading to 
the apparent "wrap around" in the read (vertical) direction, where high-frequency regions are 
interpreted as low frequency due to insufficiently rapid sampling.  The problem is solved in the 
right hand image, in which the read sampling rate was increased by a factor of two with constant 
Gr, resulting in a doubling of the FOV. 
 

 We note that Eq. [31] applies to the phase-encode (subscript "PE") dimension as well, 
where, instead of Eq. [33], one has: 
 ΔkPE = γΔGPEτ         [36] 
Here, ΔGPE is the phase encode gradient step and τ is its duration.  Therefore we require 
  γΔGPEτ < 1/WPE
so that aliasing can be avoided by taking, for example, 
 ΔGPE < 1/( γτWPE)        [37]   
With FOVPE = 1/ΔkPE, we generally write the non-aliasing condition as WPE < FOVPE, as before.   
Avoiding aliasing in the phase encode direction is considerably more problematic than in the 
read direction.  In the phase encode direction, higher frequency sampling, that is, more closely 
spaced phase encode steps, requires addition of more shots if resolution is to be maintained.  
Because the duration of the image acquisition is given by Nshots * TR, where TR is the interval 
between excitation pulses and Nshots is the total number of shots, this results in longer imaging 
time.   
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