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A Philosophical DebateA Philosophical Debate
Do we live in a digital Do we live in a digital 

world or an analog world?world or an analog world?

An Engineering RealityAn Engineering Reality
We live in a digitized world.We live in a digitized world.
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Fundamental fact: Fundamental fact: 

•• MRI data is acquired in kMRI data is acquired in k--spacespace
•• xx--space is just a derived quantity space is just a derived quantity 

(which we happen to be interested in)(which we happen to be interested in)

Therefore, we need to understand:Therefore, we need to understand:
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DataData ImageImage
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Plan:  to demonstrate that  Plan:  to demonstrate that  
•

 

The basic concepts of time/frequency signal
processing can be carried over to MRI

•

 

ΔΔkkxx

 

and and ΔΔkkyy

 

are the relevant sampling intervalsare the relevant sampling intervals

•

 

The imaging equation defines the transformation between 
conjugate variables--Fourier

•

 

Sampling and other operations on data are performed 
in k-space; the convolution theorem supplies the resulting 
effect in the image

•

 

Both DSP and physical effects must be considered



Digitization of a TimeDigitization of a Time--Domain Analog SignalDomain Analog Signal
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Sampling in kSampling in k--spacespace

Read directionRead direction Phase directionPhase direction

For both dimensions: data is spaced at intervals For both dimensions: data is spaced at intervals ΔΔkk
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Significance of this:Significance of this:

••

 

From a postFrom a post--processing point of view, read and phase processing point of view, read and phase 
directions in MRI can be handled in an identical fashiondirections in MRI can be handled in an identical fashion

••

 

Much of what you already know about signal Much of what you already know about signal 
processing of sampled timeprocessing of sampled time--domain signals can domain signals can 
be immediately carried over to MRIbe immediately carried over to MRI

Data in kData in k--space is (usually) regularly sampled on a grid.space is (usually) regularly sampled on a grid.

This sampling is entirely analogous to sampling ofThis sampling is entirely analogous to sampling of
timetime--domain data:  domain data:  

intervals are intervals are ΔΔkkxx

 

andand

 

ΔΔkkyy

 

instead of interval instead of interval TTss



The kThe k--space sampling function is written:space sampling function is written:

N, number of sampledN, number of sampled
points in points in kkxx

 

or or kkyy

/ 2

/ 2
( ; ) ( )

N

n N
Comb k k k n kδ

+

=−

Δ = − Δ∑

kk--space data are numbers assigned to each grid point:  space data are numbers assigned to each grid point:  
These are the samplesThese are the samples
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Conceptually, we can consider Conceptually, we can consider sssampsamp

 

(k(kxx
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to be a sampled version of some continuous function, to be a sampled version of some continuous function, s(ks(kxx
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The above dealt with signal acquisitionThe above dealt with signal acquisition

To proceed:  To proceed:  consider the physicsconsider the physics

Relationship Between Signal and Relationship Between Signal and 
PrecessingPrecessing

 
Spins During ReadSpins During Read

νν

ssxx

 

=cos(2=cos(2πνπνt)t)
ssyy

 

=sin(2=sin(2πνπνt)t)



Signal and Spins During ReadSignal and Spins During Read
νν

Signal from Signal from dxdx

 

dydy::

 

s(ts(t; x, y) ; x, y) dxdx

 

dydy

 

=  =  ρρ(x, y)  (x, y)  ee−−ii

 

22ππ
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t t dxdx
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ν γ= rxG

xk γ= rt G xt k xν =

2( / ) ( , ) xi k x
xs t k x x y e dxdyπν ρ −≡ = ∫∫

∫∫ Integrate over Integrate over 
all excited spinsall excited spins→→



Consideration of the phase encode gradientConsideration of the phase encode gradient
leads to the celebrated leads to the celebrated imaging equationimaging equation

……relates krelates k--space data, space data, s(ks(kxx

 

, , kkyy

 

) to the image, ) to the image, ρρ((x,yx,y))
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Note:  the Fourier transform arises from the physicsNote:  the Fourier transform arises from the physics



Combine Fourier transforms with convolutionCombine Fourier transforms with convolution
to make use of the allto make use of the all--powerful powerful Convolution TheoremConvolution Theorem

Convolution of Convolution of x(tx(t) and ) and h(th(t))

( ) ( ) ( ) ( ) ( )y t x h t d x t h tτ τ τ
∞

−∞
= − = ∗∫

Arises naturally when considering:Arises naturally when considering:

••the observable effects of intended or unintended actions on datathe observable effects of intended or unintended actions on data

••digital filtersdigital filters

fold fold →→

 

slide slide →→

 

multiply multiply →→

 

integrateintegrate
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Ingredients:Ingredients:
h(th(t) and ) and g(tg(t), and their Fourier transforms H(), and their Fourier transforms H(νν)), G(, G(νν))

= Fourier transform= Fourier transform
= Inverse Fourier transform= Inverse Fourier transform

••

 

= multiplication= multiplication
* = the convolution operator * = the convolution operator 

4 ways of writing the convolution theorem:4 ways of writing the convolution theorem:

I.       {f*g} = F I.       {f*g} = F ••

 

GG

II.     {f II.     {f ••

 

g} = F * Gg} = F * G

III.      {F III.      {F ••

 

G} = f * gG} = f * g
IV.     {F * G} = f IV.     {F * G} = f ••

 

gg

The Convolution TheoremThe Convolution Theorem

ℑ
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1−ℑ

1−ℑ

ℑ



Our application is based on the imaging equation:Our application is based on the imaging equation:

{{ρρ(x, y)} = (x, y)} = s(ks(kxx

 

, , kkyy

 

))

{{s(ks(kxx

 

, , kkyy

 

)} = )} = ρρ(x, y)(x, y)

Version III.        {s Version III.        {s ••

 

H} = H} = ρρ

 

* h* h

ℑ

1−ℑ

1−ℑ

Ideal data in k spaceIdeal data in k space
Various nonVarious non--idealities or filtersidealities or filters

Visible effect on the imageVisible effect on the image

ρρ

 

= the ideal image= the ideal image



With this, we can understand the effects that With this, we can understand the effects that 
sampling, truncation, and relaxation sampling, truncation, and relaxation 

in kin k--space have on the imagespace have on the image

••AliasingAliasing
direct sampling effectdirect sampling effect

••The point spread functionThe point spread function
truncationtruncation----signal processingsignal processing
relaxationrelaxation----physicsphysics



AliasingAliasing
aka wrapaka wrap--around, aka foldaround, aka fold--overover

??

??

  Equally good digital choices!Equally good digital choices!



Thus, high frequency sinusoids, when sampled, Thus, high frequency sinusoids, when sampled, 
can be can be mismis--assigned to a lower frequency!assigned to a lower frequency!

To avoid this, sample at a rate To avoid this, sample at a rate ννS S = 1/T= 1/Tss

 

which satisfies which satisfies 
ννS S >>

 

2 2 ••

 

νν
where where νν

 

is the frequency of the sinusoidis the frequency of the sinusoid

This rate, This rate, 2 2 ••

 

νν

 

is called the is called the NyquistNyquist rate, rate, ννNN

To avoid aliasing:  To avoid aliasing:  ννS S > > ννNN

 

≡≡

 

2 2 ••

 

νν

1/1/νν



Fourier decomposition permits extension of this theorem Fourier decomposition permits extension of this theorem 
to a general to a general bandlimitedbandlimited

 

((--ννmaxmax

 

, , ννmaxmax

 

) ) signal, described as:signal, described as:

g(t) = G(ν)ei2πνtdν
−νmax

νmax

∫

Then aliasing is avoided by ensuringThen aliasing is avoided by ensuring
ννS S > > ννNN

 

≡≡

 

2 2 ••

 

ννmaxmax

Note: for a nonNote: for a non--bandlimitedbandlimited

 

signal, apply an antisignal, apply an anti--aliasing aliasing prefilterprefilter::

••
--ννmaxmax

==
ννmaxmaxtt

NonNon--bandlimitedbandlimited

 

signalsignal prefilterprefilter bandlimitedbandlimited

 

signalsignal



The convolution theorem defines the The convolution theorem defines the 
effect on the image of samplingeffect on the image of sampling

( ; ) ( )Comb k k k m kδ
∞

−∞

Δ = − Δ∑

A straightforward calculation shows:A straightforward calculation shows:
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{{Comb(kComb(k; ; ΔΔk)} = 1/ k)} = 1/ ΔΔk  k  ••

 

Comb(xComb(x; 1/ ; 1/ ΔΔk)k)

kk xx

ℑℑ--11

ΔΔkk 1/1/ΔΔkk



We can now calculate:We can now calculate:

ρρ

 

sampsamp

 

(x(x) = ) = ℑℑ--11{s(k) {s(k) ••

 

Comb(kComb(k; ; ΔΔk)}k)}

= = ℑℑ--11{s(k)} {s(k)} * * ℑℑ--11{{Comb(k; Comb(k; ΔΔk)} k)} 

==

Obtain replicates, spaced at a distance Obtain replicates, spaced at a distance 1/ 1/ ΔΔk apartk apart

( ) ( ;1/ )x Comb x kρ ∗ Δ



Replication:Replication:
LL

LL

1/ 1/ ΔΔkk

Provided Provided 1/ 1/ ΔΔk > L, there is no overlap and k > L, there is no overlap and 
correct reconstruction is possiblecorrect reconstruction is possible

xx1/1/ΔΔkk
**



••

 

ΔΔkkxx

 

< 1/L< 1/Lxx

••

 

ΔΔkkyy

 

< 1/L< 1/Lyy

Using only the convolution theorem, we found thatUsing only the convolution theorem, we found that
we can avoid aliasing by selectingwe can avoid aliasing by selecting

L / 2L / 2

νν

 

= 0= 0

This is This is equivalent toequivalent to the the NyquistNyquist

 

sampling theoremsampling theorem
i) (definition)

ii) Δk < 1/L (the condition derived above)

i) and ii) ⇒
iii)

which can be written:

iv) 

using the value of νν

 

max max , we obtain
v) Ts < 1/(2 νν

 

maxmax

 

) ) which can also be written:  νν

 

ss

 

> 2 νν

 

maxmax

 

=  The =  The NyquistNyquist conditioncondition
max  = ν γ L

2 xG

xk  = γΔ xG sT

 γ xG 1/sT L<

1 sT γ<
xG L



This was derived for the read direction, butThis was derived for the read direction, but
identical considerations apply in the identical considerations apply in the 

phase encode directionphase encode direction

Thus, to fit the entire object into the image, one needs to sampThus, to fit the entire object into the image, one needs to samplele
in kin k--space such that space such that ΔΔk < 1 / L is satisfiedk < 1 / L is satisfied

ΔΔk is called the FOVk is called the FOV

FOV = 7.5 cmFOV = 7.5 cm
Aliased in phase encodeAliased in phase encode

FOV = 15 cmFOV = 15 cm
NonNon--aliasedaliased



Actual:Actual:

••
--kkmaxmax kkmaxmaxkk

==

TruncatedTruncated
kk--space dataspace data

s(ks(k) ) →→

 

••

 

s(ks(k) = ) = sstrunctrunc

 

(k)(k)

Point Spread Function Due to Point Spread Function Due to Signal ProcessingSignal Processing
Actual data are samples from truncated kActual data are samples from truncated k--space  space  



The convolution  theorem can help define the The convolution  theorem can help define the 
result of this truncationresult of this truncation

The resulting 1The resulting 1--D image is given by:D image is given by:

ρρ

 

trunctrunc

 

(x(x) =  ) =  ℑℑ--11{s{strunctrunc

 

(k)}(k)}

= = ℑℑ--11{ { Rect(kRect(k) ) ••

 

s(ks(kxx

 

)})}

= = ℑℑ--11{ { Rect(Rect(kk)} * )} * ℑℑ--11{s(k)}{s(k)}

==

We will use:  We will use:  ℑℑ--11{{ (k)} =(k)} =
Sin(x)/xSin(x)/x

also known asalso known as
Sinc(xSinc(x))

max

max

sin(2 )
2 * ( )k x

k x xπ
π ρ



Therefore, a delta function density distribution Therefore, a delta function density distribution 
in one dimension becomes:  in one dimension becomes:  

Ideal point objectIdeal point object Smearing from truncationSmearing from truncation Actual image:Actual image:
blurredblurred

==**
ρρ(x)(x) sin(2 )

2
kx

kx
π

π



More truncation gives more blurringMore truncation gives more blurring

Point Spread Function Due to Truncation
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--kkmaxmax kkmaxmax

--10241024 10241024

--512512 512512

--256256 256256
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We can now calculate the combined We can now calculate the combined 
effects of sampling and truncation:effects of sampling and truncation:

ρρ

 

sampsamp, , trunctrunc

 

(x(x) = ) = ℑℑ--11{s(k) {s(k) ••

 

Rect(kRect(k) ) ••

 

Comb(kComb(k; ; ΔΔk)}k)}

==ℑℑ--11{s(k)} {s(k)} **

 

ℑℑ--11{Rect(k)} {Rect(k)} **ℑℑ--11{Comb(k; {Comb(k; ΔΔk)}k)}

==

Obtain: Obtain: 
••

 

replication, spaced at a distance replication, spaced at a distance 1/ 1/ ΔΔk apartk apart
••

 

smearingsmearing
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max
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1( ) ( ;1/ ) 2 k x
k xx Comb x k k
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πρ ∗ Δ ∗
Δ



s(ks(kxx

 

, , kkyy

 

) ) →→

 

••

 

s(ks(kxx

 

, , kkyy

 

) = ) = sstrunctrunc
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,max,max
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sin(2 )sin(2 )
2 2 * ( , )yx

x y

k yk x
k x k y x yππ

π π ρ=

In two dimensions:  two dimensional truncation!In two dimensions:  two dimensional truncation!

{ }1( , ) ( , )trunc trunc x yx y s k kρ −= ℑ

The image is given by:The image is given by:

{ }1 1( , ) * ( , )x y x yrect k k s k k− −= ℑ ℑConvConv

 

ThmThm

 

→→

••



What does this point spread function look like?What does this point spread function look like?

ℑℑ--11

PSF in 2D xPSF in 2D x--spacespaceTruncation pattern in 2D kTruncation pattern in 2D k--spacespace



ℑℑ--11

PSF in 2D xPSF in 2D x--spacespaceTruncation pattern in 2D kTruncation pattern in 2D k--spacespace

As in 1 dimension, width of point spread As in 1 dimension, width of point spread 
function is inverse to width of truncationfunction is inverse to width of truncation

ℑℑ--11



1/T1/T22

 

* * = = 1/T1/T22

 

+ 1/T+ 1/T22

 

´́

Net decayNet decay Thermodynamic decayThermodynamic decay Reversible Reversible dephasingdephasing

In the gradient echo experiment, both TIn the gradient echo experiment, both T22

 

and Tand T22

 

´́
decay start from the beginning of each kdecay start from the beginning of each k--space line, at space line, at −−kkmaxmax

kkxx

*
2/t Te−

Next example:  Point Spread Function Due to Next example:  Point Spread Function Due to PhysicsPhysics
The effect of TThe effect of T22 * decay* decay



••
kkΔΔkk

==

kkΔΔkk kkΔΔkk

Ideal dataIdeal data kk--space filterspace filter Actual data Actual data 

*
2/( ) ( ) ( ) ( ) t Ts k rect k s k rect k e−• → • •

Gradient echo sequenceGradient echo sequence

*
2/t Te−



* *
2 2/ / /t T TE T ke e e γ− − −=

*
2GT

Rewrite in terms of k:Rewrite in terms of k:

k γ= ( )rG t TE− GGreadread

TETE

tt

*
2/ /( ) ( ) ( ) ( ) TE T ks k rect k s k rect k e e γ− −• → • •

*
2GT

Therefore:Therefore:



*
2/ /1( ) ( ) TE T kPSF x rect k e e γ− −−= ℑ •( )*

2GT

*
2/ /2TE T kikxe e e γπ− −=

*
2

m

m

k GT

k
dk

−∫

Note:Note:
2 m

s

k
T γ=

readG GGreadread

mk− mk

sTTherefore:  Therefore:  
*

2( ; / )sPSF PSF x T T=



*
2( ; / )sPSF PSF x T T=

TT22

 

* negligible:* negligible:
PSF as for truncationPSF as for truncation

TTs s = 5= 5••TT22

 

*;*;
RelaxationRelaxation
broadeningbroadening

TTs s = 10 = 10 ••TT22

 

*;*;
PSF dominated PSF dominated 
by relaxationby relaxation

Broadening occurs as Broadening occurs as 
data acquisition time data acquisition time 

lengthens on the lengthens on the 
time scale of Ttime scale of T22 

** relaxationrelaxation

Spread in Units of Reciprocal k-space Truncation Interval
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Point Spread Function Due to Point Spread Function Due to TT22 decaydecay

1/T1/T22

 

* * = = 1/T1/T22

 

+ 1/T+ 1/T22

 

´́

In the spin echo experiment In the spin echo experiment 
••

 

TT22

 

decay starts from the beginning of each decay starts from the beginning of each 
kk--space line, at space line, at −−kkmaxmax

••

 

TT22

 

´́

 

effectively effectively ““startsstarts””

 

at k = 0, in the middle of acquisitionat k = 0, in the middle of acquisition

kkxx
2/t Te−

2
'/t Te−



This PSF can be described by its full This PSF can be described by its full 
width at halfwidth at half--maximum (FWHM)maximum (FWHM)
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Conclusions:Conclusions:

•

 

The basic concepts of time/frequency signal
processing can be carried over to x-space/k-space

 

in MRI

•

 

The imaging equation defines the relevant 
Fourier conjugate variables

•

 

ΔΔkkxx

 

and and ΔΔkkyy

 

are the sampling intervals, analogous to Tare the sampling intervals, analogous to Tss

•

 

Sampling and other operations on data are performed 
in k-space; the convolution theorem supplies the resulting 
effects on the image
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