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A Philosophical Debate
Do we live in a digital
world or an analog world?

Auguste Rodin, bronze, ca. 1880

An Engineering Reality
We live in a digitized world.

Andrew Lipson, LEGO bricks, ca. 2000



Fundamental fact:

 MRI data Is acquired Iin k-space
» X-space Is just a derived quantity
(which we happen to be interested in)

Therefore, we need to understand.:

DEF:] Image




Plan: to demonstrate that

* The basic concepts of time/frequency signal
processing can be carried over to MRI

* Ak, and Ak, are the relevant sampling intervals

 The imaging equation defines the transformation between
conjugate variables--Fourier

« Sampling and other operations on data are performed
in k-space; the convolution theorem supplies the resulting
effect in the image

 Both DSP and physical effects must be considered



Digitization of a Time-Domain Analog Signal

Sampling Interval T,
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Sampling during MRI
signhal acquisition
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Sampling in k-space

Read direction . Phase direction
K, %G t k, =G,

For both dimensions: data is spaced at intervals Ak

AK, =

»=y[2r



Data in k-space is (usually) regularly sampled on a grid.

This sampling is entirely analogous to sampling of
time-domain data:
intervals are Ak, and Ak, instead of interval T,

Significance of this:

* From a post-processing point of view, read and phase
directions in MRI can be handled in an identical fashion

 Much of what you already know about signal
processing of sampled time-domain signals can
be immediately carried over to MRI




The k-space sampling function is written:

+N/2

Comb(k;Ak)= Y. &(k—nAk) N, number of sampled

No—N/2 points in k, or k,

AT M
Ak k

k-space data are numbers assignhed to each grid point:
These are the samples s, (k,, k)

Conceptually, we can consider s, (k,, k)
to be a sampled version of some continuous function, s(k,, k)



The above dealt with signal acquisition

To proceed: consider the physics

Relationship Between Signal and
Precessing Spins During Read

oy

s,=cos(2nvt)
s,=sin(2nvt)




Signal and Spins During Read

"
S

Signal from dx dy: s(t; x, y) dx dy = rp(x, yS ‘ei2nvtdy dy

_ k Integrate over
> —  (vi= X X all excited spins

K =716,

/

s(t=k, x/v)= j j (X, y) e *dxdy



Consideration of the phase encode gradient
leads to the celebrated imaging equation

...relates k-space data, s(k,, k,) to the image, p(x,y)
S(kx’ky) - J:[ IO(X, y) e—iﬂ(kxx+ky)’)dxdy — S[,O(X, y)]

p(x,y)= [[s(k k) ek dk,

37 s(k.k,) |

Note: the Fourier transform arises from the physics‘




Combine Fourier transforms with convolution
to make use of the all-powerful Convolution Theorem

Convolution of x(t) and h(t)

y(t) = [ x(x)h(t—z)dz = x(t) * h(t)

fold — slide —» multiply — integrate

Arises naturally when considering:

othe observable effects of intended or unintended actions on data

edigital filters



Convolution of x(t) and h(t) =

yt) = x()

h(t—7)dz = x(t) *h(t)
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The Convolution Theorem

Ingredients:
h(t) and g(t), and their Fourier transforms H(v), G(v)

S = Fourier transform

S = Inverse Fourier transform
e = multiplication

* = the convolution operator

H

4 ways of writing the convolution theorem:

. 3{fg}=F+G
Il. 5{feg}=F*G
. SYF<G}=f*g
IV.5YF*G}=fsg

1



Our application is based on the imaging equation:

3 {p(x, y)} = s(k,, ky)

I {s(ky ky)} = p(x, y)

,4— Visible effect on the image

Versionlll. S {s*H}=p*

N

Various non-idealities or filters
Ideal data in k space

p = the ideal image



With this, we can understand the effects that
sampling, truncation, and relaxation
In k-space have on the image

esAliasing
direct sampling effect

eThe point spread function
truncation--signal processing
relaxation--physics



Aliasing

aka wrap-around, aka fold-over

I
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Thus, high frequency sinusoids, when sampled,
can be mis-assigned to a lower frequency!

To avoid this, sample at a rate vg = 1/T_ which satisfies
Vg >2°V
where v is the frequency of the sinusoid

1/v

This rate, 2 * v is called the Nyquist rate, vy

To avoid aliasing: vg>vy=2°v



Fourier decomposition permits extension of this theorem
to a general bandlimited (-v,,.., Vmax) Signal, described as:

Then aliasing is avoided by ensuring
Vs >VNEZ.Vmax

Note: for a non-bandlimited signal, apply an anti-aliasing prefilter:

Non-bandlimited signal prefilter bandlimited signal

/\'N\’I/\_\\° =(\/\/]:

t “Vmax Vmax




The convolution theorem defines the
effect on the image of sampling

Combi(k; Ak) = 3 8(k ~mAK)

A straightforward calculation shows:

31 {Comb(k; Ak)} = 1/ Ak * Comb(x; 1/ Ak)

=[] ]

“—> k

Ak 1IAK



We can now calculate:

Peamp(X) = 37{s(K) » Comb(k; Ak)}
= 3-{s(k)} * 3-{Comb(k; Ak)}

= p(x)*Comb(x;1/Ak)

Obtain replicates, spaced at a distance 1/ Ak apart



Replication:

1/ Ak

Provided 1/ Ak > L, there is no overlap and
correct reconstruction is possible



Using only the convolution theorem, we found that
we can avoid aliasing by selecting

* Ak, < 1/L,
« Ak, < 1/L,

This is equivalent to the Nyquist sampling t
i) AK, = 4G, T, (definition)

iif) Ak <1/L (the condition derived above)

i) and ii) =

i) G T <1/L

which can be written:

iv) T, < %éL

L
using the value of v, , we obtain vE0 Vi = %EGX
v) T, <1/(2 v,,., ) which can also be written: v.>2v__. = The Nyquist condition



Thus, to fit the entire object into the image, one needs to sample
in k-space such that Ak <1 /L is satisfied
Az called tng FOVY

This was derived for the read direction, but
identical considerations apply in the
phase encode direction

lice: 111

FOV =7.5cm FOV =15cm
Aliased in phase encode Non-aliased



Point Spread Function Due to Signal Processing
Actual data are samples from truncated k-space

|

.
.o,
“

P e Truncated
I" k-space data

Actual: s(k) —» | l- S(k) = S¢runc (K)



The convolution theorem can help define the
result of this truncation

Sin(x)/x
also known as
Sinc(x)

We will use: S

The resulting 1-D image is given by:
ptrunc(x) = S-'I{Strunc(k)}
= 3-1{ Rect(k) * s(k,)}

= 31 Rect(k)} * I 1{s(k)}

Sil’](ZﬂkmaXX) +* IO(X)

2 7K iy X




Therefore, a delta function density distribution
in one dimension becomes:

Ideal point object Smearing from truncation Actual image:
blurred



max

More truncation gives more blurring

k Point Spread Function Due to Truncation
max

-1024

1024

G

read

-512 512

-256 256 T 0 10
x (arbitrary units)




We can now calculate the combined
effects of sampling and truncation:

Peamp, trunc(X) = I7{s(k) * Rect(k)  Comb(k; Ak)}

=3{s(k)} * 3"'{Rect(k)} *I{Comb(k; Ak)}
= p(Xx)*Comb(x;1/Ak) S A

Ak X 27Z'kmaXX

Obtain:
* replication,
e Smearing

aced at a distance 1/ Ak apart



In two dimensions: two dimensional truncation!

s(ky, ky) > * S(ky; Ky) = Strunc (Kx: ky)

The image is given by:

Praane (%2 ¥) = I {Siune (K, K, )}

Conv Thm — :S‘l{rect(kx, y)}*wls(kx, y)

SIN(277Ky maxX)  SIN(27Ky e Y)

27[kx,m’axx ) Zﬂky,maxy p(x, y)




What does this point spread function look like?

il L
31 :

Truncation pattern in 2D k-space PSF in 2D x-space



As in 1 dimension, width of point spread
function is inverse to width of truncation

. ] L

4

Truncation pattern in 2D k-space PSF in 2D x-space

-
= il L
3-1
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Next example: Point Spread Function Due to Physics
The effect of T,* decay

1T, = 1T, +1/T,

N

Net decay Thermodynamic decay Reversible dephasing

In the gradient echo experiment, both T, and T,
decay start from the beginning of each k-space line, at k.,
—t/T,

S~ 1 /'e




il

Gradient echo sequence

IS

]

Ak
Ideal data

k

4/e

—t/T,

Ak

k-space filter

k

Ak
Actual data

s(k) e rect(k) — s(k) e rect(k) ee V'™

k



Rewrite in terms of k:

k - ' (t _TE) Gread
>§TE
t
Therefore:
e—t/Tz* _ —TE/TZ*e—k/?LGTZ*

s(k) e rect(k) — s(k) e rect(k) ee &/ g K/7CT




PSF(x) =3 (rect(k) o TE/MgkK/7CT )

read

Therefore: T

PSF = PSF(X;T, /T,)



PSF|=|PSF(x;T,/T,)

Foint Spread Function Due to T2* Decay

Broadening occurs as

data acquisition time
lengthens on the

time scale of T, relaxation

T.=10 oT,7%;
PSF dominated
by relaxation
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Spread in Units of Reciprocal k-space Truncation Interval Relaxation
broadening

T,* negligible:
PSF as for truncation



Point Spread Function Due to T, decay

1T, = 1T, +1/T,

In the spin echo experiment
* T, decay starts from the beginning of each
k-space line, at k..,

» T, effectively “starts” at k = 0, in the middle of acquisition

e—t/Tz'

,>\




This PSF can be described by its full
width at half-maximum (FWHM)

[\8]

1.8

e
[o7]

e
I

-
[p¢]

—_

<
™

=
@

<
I

>
(1]
Q
(<))
©
) N
-
o
-
(<))
=
(]
LL
7p)
(a
(T
(o]
=
=
LL

o
]

3 4 5 5} 7 8 9 10

T, [T, (arbitrary units)




Conclusions:

* The basic concepts of time/frequency signal
processing can be carried over to x-space/k-space in MRI

* The imaging equation defines the relevant
Fourier conjugate variables

* Ak, and Ak, are the sampling intervals, analogous to T,
« Sampling and other operations on data are performed

in k-space; the convolution theorem supplies the resulting
effects on the image
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